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Abstract

Motivation: Drug re-positioning allows expedited discovery of new applications for existing compounds,
but re-screening vast compound libraries is often prohibitively expensive. "Connectivity mapping" is a
process that links drugs to diseases by identifying drugs whose impact on expression in a collection
of cells most closely reverses the disease’s impact on expression in disease-relevant tissues. The high
throughput LINCS project has expanded the universe of compounds, cellular perturbations, and cell types
for which data are available, but even with this effort, many potentially clinically useful combinations are
missing. To evaluate the possibility of finding disease-relevant drug connectivity despite missing data, we
compared methods using cross-validation on a complete subset of the LINCS data.
Results: Modified recommender systems with either neighborhood-based or SVD imputation methods
were compared to autoencoders and two naive methods. All were evaluated for accuracy in prediction
of both expression signatures and connectivity query responses. We demonstrate that cellular context is
important, and that it is possible to predict cell-specific drug responses with improved accuracy over naive
approaches. Neighborhood-based collaborative filtering was the most successful, improving prediction
accuracy in all tested cells. We conclude that even for cells in which drug responses have not been fully
characterized, it is possible to identify drugs that reverse the expression signatures observed in disease.
Contact: donna.slonim@tufts.edu
Supplementary information: bcb.cs.tufts.edu/cmap

1 Introduction

Connectivity mapping (Lamb et al., 2006) refers to the process of
drug repositioning by finding candidate drugs that best reverse the
expression changes caused by a given disease or condition. The
original Connectivity Map database used microarrays to profile
gene expression changes in up to four cancer cell lines treated
with 164 perturbagens, many of them FDA-approved drugs. An
expression "signature" from a given disease state, essentially sets
of up and downregulated genes in relevant tissues from patients
with the disease compared to normal controls, could then be used
to find database compounds whose effect on gene expression was
negatively correlated with the expression changes caused by the
disease. Some compounds identified in this way were shown in

further studies to have high potential for therapeutic efficacy in
disease (Lamb et al., 2006; Wei et al., 2006; Zhang et al., 2012).

Recently, the LINCS Consortium has dramatically scaled up
the connectivity map database using the L1000 assay, which
measures expression of 978 genes at a much lower cost. The
LINCS connectivity map includes a much larger set of compounds,
small molecules, and cellular perturbations across a wider range
of cell types (Subramanian et al., 2017). However, while there
are now many more cells profiled in the connectivity database,
the data matrix is still very sparse, with most drug profiles in a
small set of cancer cell lines. Yet recent work has shown that
even different breast cancer cell lines can have different, context-
specific responses to perturbation (Niepel et al., 2017). We
observe that variation in primary cells’ responses is even greater.
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Further, gene expression profiles in primary cells are a
relatively small part of the LINCS data set, and profiling all
possible cell types and states is impractical even with more efficient
assays. Thus, candidate drugs identified through connectivity
mapping may have very different effects in vivo. For a precision
medicine approach to connectivity, particularly outside the realm
of oncology, the ability to impute missing connectivity data will
improve scalability and relevance. We therefore aim to determine
whether accurate imputation of context-specific connectivity
query results is possible despite missing data.

Our first step is imputing expression values for drug/cell
combinations that lack experimental data. Since the early days of
microarrays, there have been efforts to impute missing microarray
expression values caused by array defects or hybridization issues
(e.g., array scratches, localized manufacturing defects, reagent
spatters). The naïve approach, averaging over expression values
for a given gene in other arrays in the data set, was quickly
improved upon by more principled methods, including k-nearest
neighbors and SVD (Troyanskaya et al., 2001), local least squares
optimization (Kim et al., 2005), and Bayesian prediction (Oba
et al., 2003). Several methods made use of time series information
when available (Troyanskaya et al., 2001; Saha et al., 2013; Bar-
Joseph et al., 2003). Collaborative filtering methods have even
been applied to this problem (Saha et al., 2016; Wang and Tseng,
2012).

However, nearly all of these approaches address a different
problem from that we handle here – one in which there is a limited
fraction (e.g. under 20%) of missing genes for a given sample, and
in which the missing data points are not correlated across samples.
A few approaches try to fit some characteristics of the random
missing data, such as the observed histogram of the fraction of
missing genes per sample (Oba et al., 2003). Only some of the
time series methods (e,g, (Bar-Joseph et al., 2003)) deal with
imputing whole expression profiles.

Furthermore, in order to impute entirely missing expression
profiles, one must incorporate additional domain information,
such as that from nearby time points, or functional relationships
between genes’ expression patterns. In another example, transfer
learning has been used to impute entire bulk RNA-sequencing
profiles when methylation profiles for the same samples are
available (Zhou et al., 2020). In our case, we use expression
profiles of related drugs and cells.

Explicitly imputing connectivity data for unassayed drugs and
cells is thus a novel problem. Further, connectivity expression
matrices can be very sparse, with well over half of the potential
cell by drug matrix consisting of missing values. The novelty
of our approach lies in using what data we do have about how
specific drugs perform in other cells, and how various cells respond
differently to other drugs, to infer missing data and then to assess
efficacy specifically with respect to drug connectivity inference.
The closest prior work we have seen is that of (Gottlieb et al.,
2017), which uses (a limited number of) expression values inferred
from eQTL and patient cohort data to predict appropriate doses for
warfarin. Such methods have great potential, but cannot be used
without data on sequence variation.

2 Methods
2.1 Overview of approach

To assess our ability to determine connectivity with missing data,
we need a data set where we know the right answers. We create
such a data set by taking a complete subset of the LINCS data and
performing five-fold cross-validation. Each drug/cell combination
is removed from the data set in one fold and predicted from the
remaining data. We then assess prediction accuracy of both the
expression vectors and of connectivity queries performed with
genes characterizing each drug’s impact on cells. Specifically, we
start with a drug-cell combination of interest, which we denote
as drug di and cell cj , and for which the expression profile
is unavailable. Our key question is how well we can impute
expression and thus connectivity for di and cj , and whether we
can do so more accurately by taking cell type into account.

2.2 Connectivity mapping data and queries

Let C be a set of c cell types, and letD be a collection of d drugs,
compounds, or cellular perturbations. Perturbations in LINCS
include gene overexpression or knockdowns, but for the purposes
of this study we consider primarily treatment of cells with named
compounds or chemicals.

We start with a matrix M of gene expression profiles for a
common set ofngenes in some subset ofD×C. The matrix of cells
and drugs is sparse, but the expression profiles are all-or-nothing;
if we have expression data for some cell/drug combination, we
have expression values for all n genes in the treated cell compared
to the untreated cell.

As in the paper describing the L1000 connectivity data
set (Subramanian et al., 2017), these expression changes are
represented by z-scores. Specifically, we use the published "Level
5" z-score data, which include z-scores of expression changes in
drug-treated cells relative to controls, averaged over at least three
replicates. When a cell / drug combination appears multiple times
in the LINCs database, usually because that combination has been
tested at different dosage levels or had expression profiles taken
at different times after application, the expression profiles were
combined into a single consensus profile, using Stouffer’s method
for combining Z-scores (Stouffer, 1949).

A query signature of a particular biological or disease state
is defined to consist of two sets, one containing the k most up-
regulated, and the other the k most down-regulated, genes in that
state compared to a suitable control. So for example, a query
signature for prostate cancer might consist of the 50 most up- and
down-regulated genes in tumors from patients compared to normal
prostate tissue.

A connectivity map query is performed using the query
signature in the following way, as described in more detail
in (Subramanian et al., 2017). Given the query signature qu
containing the k most upregulated and qd containing the k most
downregulated genes for a given cell type and drug pair c, d and a
reference profile r, we compute the weighted connectivity score
(WTCS) as:

WTCS =

{
ES(qu,r)−ES(qd,r)

2
if sgn(ES(qu, r)) 6= sgn(ES(qd, r))

0 otherwise

where ES(q, r) is the weighted Kolmogorov-Smirnov
enrichment statistic (ES) described in (Subramanian et al., 2005),
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and captures the enrichment of the set of genes q in profile r.
WTCS ranges from -1 to 1. A score of 1 represents high positive
connectivity, meaning that the drug’s effect on the given cell
appears to be similar to that in the query signature, while a
score of -1 represents high negative connectivity, or a drug/cell
combination that up-regulates the down-regulated genes from the
query signature and down-regulates its up-regulated genes.

Our data are derived from the LINCS data published in the Gene
Expression Omnibus (GEO) (Edgar et al., 2002) as GSE70138 and
GSE92742. Together these contain 591,699 expression profiles for
98 cell types and 29,668 perturbagens spread over 189,173 unique
cell/perturbagen combinations. The data were downloaded on Feb.
28, 2018.

For assessment purposes, we identified a complete data sub-
matrix containing 12 cell types: 8 cancer cell lines, A375, A549,
HCC515, HEPG2, HT29, MCF7, PC3, & VCAP; HA1E, an
immortalized normal kidney cell line; and three primary cell
types: ASC (adipose cells), NPC (neural progenitor cells partially
differentiated from iPSCs) and NEU (fully differentiated neurons).

To create a complete and interpretable data matrix, We also
selected a subset of 450 drugs that have "real" names (i.e., they are
not just numbered compounds in development) and for which there
is expression data for all 12 of the cell types above. We then created
two versions of that 12x450 data set: one using the 978 "landmark"
genes from the L1000 assay, and a second with all 12,328 genes
in the full LINCS data set, most of which are inferred from the
expression levels of the 978 landmark genes. All experiments
described in this manuscript use just the landmark gene set, except
when we specifically discuss assessing performance on the larger
gene set.

2.3 Data imputation methods

2.3.1 Baseline methods
In the original connectivity map paper (Lamb et al., 2006),
connectivity scores were computed without consideration of
cell type, essentially averaging across all cells. Given that
the vast majority of these profiles were in a single cell line
(MCF7), ignoring cellular context made sense. Even the current
connectivity tool, using the much larger and more varied LINCS
data set, reports averaged "summary" profiles (Subramanian et al.,
2017). This informs the idea behind our baseline imputation
methods.

Tissue-agnostic: A good baseline prediction of drug di’s
performance in cell cj might be simply to look at what drug di
does to a cell, regardless of what type of cell it is. Assume that we
have expression profiles for drug di on other cell types. By taking
the median gene expression profile over of that drug all the other
cells for which we do have data (the highlighted row in Figure 1a),
we arrive at a prediction of what drug di "usually does" to a cell.
We call this the tissue agnostic imputation method, and compare
other results to this.

Two-way average: We might additionally want to include tissue-
specific information in a very straightforward way. We can
accomplish this by averaging the tissue-agnostic prediction for
drug di across all other cells with the analogous "drug-agnostic"
average for cj (the highlighted column in Figure 1a) that tells
us how expression of cj after perturbation typically differs from
expression in other cells. We refer to this as two-way average
prediction.

2.3.2 Collaborative filtering
Collaborative filtering is an approach used in recommender
systems to impute missing rating values and thereby recommend
new products to users based both on information from similar users
and other items that user has rated. Calculations are typically based
on sparse databases with m users and n items containing those
users’ ratings for≤ n of those items (Su and Khoshgoftaar, 2009).
These ratings can represent any kind of relationship between
users and items. In applications such as movie or purchase
recommendations, the ratings might be represented by integers
in the range [1,5]. But in other applications, ratings might be real
numbers or categorical variables. This approach is of particular
interest for imputation of connectivity data because of the sparsity
of the database.

Neighborhood approach: One approach to collaborative filtering
is to rely on the closest neighbors of a particular sample as a model.
An average, weighted by similarity of the neighbors’ ratings,
approximates the rating for the sample of interest. A critical change
was necessary to use this approach with our data, because each
"rating" in the connectivity matrix is actually a vector of gene
expression values. To avoid loss of information, we view the gene
expression values as a multi-part rating of the same item. In the
user/movie-rating metaphor, these values would represent a rating
that perhaps specified an overall rating, as well as ratings of the
movie’s acting, cinematography, and soundtrack. If two users rate
a movie similarly but one rates the cinematography poorly and
other rates it highly, these users might actually be more different
than they first appear.

From the data matrix M defined in section 2.2, we then
compute a "ratings" matrix R by mean centering the row of a
drug’s "rating vectors" for all cells. Specifically, let µ be the mean
of all non-missing values in the row, and then replace each existing
value v by (v − µ) and each missing value by (0− µ).

We then calculate similarities by taking the cosine similarity
between all pairs of rows in R, yielding a symmetric matrix.

For each missing expression profile (vector), we then predict
that profile by finding the top x "neighbors" of the row containing
the missing value. We compute the predicted profile Pij for drug
ci and cell cj , as

Pij = rij +

∑x
l=1 cos(ri, rl) ∗ rlj∑x

l=1 cos(ri, rl)

where cos refers to the cosine distance between two ratings vectors,
rij refers to the ratings vector in row i and column j, ri is the
average value of all values present in row i, and rlj is the value
corresponding to the current drug-cell-gene combination in the
neighbor row l.

Matrix decomposition: The goal of this approach is to account
for latent subclasses within the drugs or cells. We used the
FunkSVD package, which applies stochastic gradient descent
SVD optimization to build an approximation of an original input
matrixM . This specific methodology was shown to be particularly
effective in predicting Netflix movie ratings (Bennett and Lanning,
2007). The FunkSVD method does not require a complete matrix
to run, and effectively "overlooks" missing or unknown ratings
(Funk, 2006). Note that this is not the case for a simple SVD
decomposition, which would require some initial "guess" for
the missing entries (Sarwar et al., 2000). Therefore, we worked
directly with the raw values in M . We still consider M to be a
multi-part ratings matrix, although it is not mean-centered likeR.
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a b c

Fig. 1. Fig. 1. Methods overview. a) In tissue-agnostic imputation, the median of the expression profiles (vectors) for drug di on cells other than cj (in
blue) is used to predict the unknown expression profile for drug di on cell cj . The two-way average is the average of two sets of expression profiles: the
median of the expression profiles for drug di on cells other than cj (in blue) and the median of the expression profiles for drugs other than di on cell cj
(in green). b) In the neighborhood approach to collaborative filtering imputation, neighbors are drugs whose expression profiles on cells other than cj
(in orange) are most similar to di’s profile on cells other than cj (in blue). In this example with x = 2 neighbors, the expression profile for cell cj on
neighbor drugs dn1 and dn2, shown in green, are used to impute the profile for drug di on cell cj . c) In the autoencoder approach, a lower-dimensional
coding representation of cell and drug specific expression profiles are learned through an encoder and then decoded back to reconstruct the original data
or to predict the expression profiles of missing cell and drug combinations.

FunkSVD decomposes the matrix into component matrices
U and V with singular values folded into those matrices. The
parameters of this function determine the output rank of the
approximation. (We tuned the rank parameter k on a smaller and
older data set consisting of 200 drugs and 6 cells; we did not find
the results to be highly sensitive to changes in k.) A lower-rank
approximation can then be obtained by reconstructing the matrix
withM = UV ′. We then predicted the values of missing data per
row with the approximation rnew = uV ′ where u is a row in M
containing an unknown multi-part rating.

2.3.3 Autoencoder
An autoencoder uses neural networks to learn a lower-dimensional
representation of the data and handles sparse or missing data well.
It has been successfully applied in image processing and speech
tasks as a latent factor model. The method maps (encodes) an
input to a hidden representation (code) via an encoder (Baldi,
2012; Bourlard and Kamp, 1988). The coded representation is
then decoded to the target output with the same dimension as the
input via a decoder. Both the encoder and decoder are feed-forward
artificial neural networks. Non-linear hidden units and additional
hidden layers enable autoencoders to learn more complex hidden
structures in data (Chicco et al., 2014).

Here, we first train an autoencoder to learn the hidden structure
of expression profiles of drug-cell combinations, and then we
impute the missing profile given the cells’ and drugs’ two-way
average profile.

During the training phase, the parameters of the encoder
and decoder are learned by minimizing the reconstruction
error, specifically, the Mean Square Error (MSE) with an L2
regularization term to avoid overfitting. During the imputation
stage, the expression profiles of specific missing cell and drug
combinations are first computed using the two-way average
described in section 2.3.1, then fed into the trained autoencoder to
reconstruct the imputed profiles.

In this work, we did not experiment with changing the original
network architecture, instead choosing a default architecture
having 3 hidden layers with 100 units coding representation,
corresponding to a reducing factor of 9.78, as shown in Figure 1c.

We use the Rectified Linear Unit (reLu) as a non-linear activation
function (Nair and E. Hinton, 2010). Adadelta (Zeiler, 2012)
was used as our optimization method, and the running average
parameter ρ was set to 0.95 as suggested in (Zeiler, 2012). The
regularization parameter λ was set to 0.01. Using a different
data set, we also examined whether dropout would make any
improvements and found that applying dropout on hidden layers
did not improve the performance.

2.4 Evaluation

2.4.1 Cross-validation
To assess our performance, we need data on which we know the
right answers. We therefore started with the complete data matrix
described in section 2.2. From this, we created a cross-validation
data set in the following way.

Each cell / drug combination is randomly and independently
assigned to one of five folds. We then verify that the candidate set
of fold assignments has no fold where more than 75 percent of the
cells for a given drug, or 75 percent of the drugs for a given cell,
are assigned to that fold, ensuring that any method would be able
to produce an imputed expression profile for any missing cell/drug
combination. If this requirement was violated, fold assignments
were completely regenerated until the requirement was met.

For each fold, a given method is provided only the z-score
normalized gene expression profiles for cell / drug combinations
not in the fold, and must impute the expression profiles for cell /
drug combinations that are in the fold. Over all five folds, a given
method will produce a single imputed profile for each cell / drug
combination. We then compared the imputed profile to the true
profile for that cell / drug combination, using the various scoring
metrics described below.

To address any variance due to the randomness in this cross-
validation procedure, we created five independent instances
("runs") of cross validation data sets. We summarize each of the
scoring metrics across those five runs.

2.4.2 Expression prediction
Once we have a predicted expression profile for a drug-cell
combination, we must assess how accurate our prediction is
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through some comparison to the known true expression profile.
The simplest way to do this is through direct comparison of the
predicted and true z-score normalized expression profiles, which
we do using Spearman rank correlation. Note that such correlations
are expected to be relatively low, because they consider expression
changes in all the genes in the data set. If many genes are
basically not changing with drug treatment, these may appear
in essentially random order in the middle of the predicted list,
but their correlation with the true near-zero expression changes
influences the correlation score.

2.4.3 Connectivity prediction
Since our aim is to infer connectivity for cell-drug pairs for
which we lack data, a better evaluation method would compare
the connectivity results from the withheld true data with those
obtained using the imputed data.

There are two parts of a list of drugs returned by a connectivity
query that are of interest. Drugs with the most positive connectivity
scores are drugs that replicate the query signature; these are
sometimes used to identify similar drugs, or compounds that
might mimic the query expression profile change as an adverse
event. Drugs with the most negative connectivity scores are those
that reverse the observed query signature; these are candidate
therapeutics for an observed disease signature. Accordingly, we
want to assess primarily whether the most-positive, or most-
negative, connectivity results from the imputed data replicate those
from the withheld true data.

To do this we use the Weighted Spearman Rank Correlation
measure, defined by (Shieh et al., 2000). We use a weight function
defined as

w(r) = 2φ(r|µ = 0, σ = Nε),

where r is the result rank, φ is the normal distribution of the
form φ(x|µ, σ), and ε is a parameter with value between 0 and 1
controlling the "aggressiveness" of the curve.

In this work, we chose ε = 0.01, which applies weights of
significant magnitude to approximately the top 20 results, after
which weights rapidly approach zero. We tested the effect of
doubling or halving ε, but saw minimal changes in the results.

2.5 ATC Code Matching

The Anatomical Therapeutic Chemical (ATC) drug classification
system, developed by the World Health Organization, hierarchically
classifies drugs based on therapeutic or pharmacological
properties, or by the organ system in which the drug acts. The
classifications are represented by a code, such as C03CA01. Each
letter or two-digit number in an ATC code indicates a classification
at one of five levels, with the first level being the most general and
the fifth level uniquely identifying a drug.

We therefore might expect that a connectivity query made with
a query signature derived from treatment with drug di would show
high positive connectivity scores for drugs with ATC codes that
match the ATC code of di at some level. Here, an ATC code match
at level X means that the first X letters or two-digit numbers of
the ATC codes are identical.

In our data set, 201 of the 450 drugs have ATC codes. We can
use the imputed expression profile for one of these drugs, d, to
create a query signature with the top and bottom 50 genes (the
number recommended by (Subramanian et al., 2017)). We can
then use that query signature to query the connectivity database
and identify the ranks of any other drugs that have a levelX match

with the ATC code of the query drug d. Lower ranks indicate that
these similar drugs appear closer to the top of the positive query
results. For this profile, we compute the average rank at which
these matching drugs appear. We compare the distributions of these
average ranks over all imputed profiles to the distributions of the
ranks obtained if the ranking of drug results from a connectivity
query were randomly assigned instead of determined by the WTCS
values.

3 Results

3.1 Using cell-specific data improves imputation

Figure 2a shows the Spearman correlations between the predicted
and true expression profiles for each of the 12 cell lines and each of
the five imputation methods. Figure 2b shows the percent change
for each of the methods compared to the tissue-agnostic baseline.
In all cells, we found that it was possible to improve imputation
over the tissue-agnostic method by at least 20%.

The neighborhood collaborative filtering approach improved
performance the most of all the methods we tried, in all cells.
Further, in all cells both SVD and the two-way average also
outperform the tissue-agnostic approach. Our autoencoder method
also improves upon the performance of the tissue-agnostic method
in all but the HEPG2 cell line.

The images in Figure 2 are arranged to show the cancer cell
lines and the immortalized normal kidney line HA1E in the first
two rows, while the primary cell types NEU, NPC, and ASC are
all on the bottom, along with VCAP, a somewhat atypical-looking
cancer cell line derived from metatstatic prostate cancer.

Performance in the immortalized lines tends to differ from that
in primary cells. The primary cells have lower correlations overall,
but a greater improvement using Neighborhood imputation. The
greatest improvement is in NEU cells (neurons differentiated
from iPSCs), where the correlation of the Neighborhood-imputed
predictions to the true withheld results was 127% higher than
that of the tissue-agnostic baseline method. This is, admittedly,
a change from a correlation of only 0.09 to 0.22, but incorporating
tissue-specific information via collaborative filtering can bring the
observed correlation for this unique cell type into the range typical
of the tissue-agnostic method on most cancer cell lines. These
results clearly demonstrate that cell type is an important aspect
of connectivity mapping, and that using cell-specific information
improves outcomes most dramatically in cells that are neither
malignant nor immortalized.

Figures 3 and 4 show the average weighted Spearman
correlations (over all drugs) between true and predicted
connectivity results (a), and the percent changes for each over
the tissue agnostic method (b). These are based on connectivity
queries with query signatures containing the most dysregulated
genes for each drug in the treated cell line compared to control.
Specifically, the query signatures consist of the 50 most up-
and down-regulated genes for a given drug. Positive connectivity
scores identify the drugs most similar to the query drug. Negative
connectivity scores are intended to identify drugs whose effects
on a cell are roughly the opposite of the query drugs.

The positive imputation results show little improvement
over baseline for all but the primary cell types. Indeed, the
autoencoder and SVD methods are actually worse than tissue-
agnostic imputation here. But the neighborhood collaborative
filtering and two-way average approaches, both of which use
cell specific information, are at least roughly as good as the
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a b

Fig. 2. a) Spearman correlation across all genes between the true and imputed expression z-scores, for each of the 12 cell lines in the data set. Methods
are denoted by single-letter labels: N: neighborhood collaborative filtering; S: collaborative filtering using SVD; A: autoencoder; T: two-way average; G:
tissue-aGnostic (baseline method). b) Percent change in Spearman correlation compared to that of the tissue-agnostic method; labels are the same as in
part a. Method colors match those in Figure 5.

a b

Fig. 3. a) Positive weighted connectivity correlation across all genes, for each of the 12 cell lines. Error bars show variation across cross validation runs.
Labels are the same as in Figure 2. b) Percent change in positive weighted connectivity correlation compared to the tissue-agnostic method.

a b

Fig. 4. a) Negative weighted connectivity correlation across all genes, for each of the 12 cell lines. Error bars show variation across cross validation runs.
Labels are the same as in Figure 2. b) Percent change in negative weighted connectivity correlation compared to the tissue-agnostic method.

tissue-agnostic approach for almost all cancer cells. For the
primary cells, the neighborhood approach still shows a substantial
improvement, with two-way average in second place. The tissue-
agnostic weighted correlation for NEU cells, the lowest, is 0.23,
with the other primary cells in the low 0.30s, and most cancer
lines showing a weighted correlation between 0.5 and 0.63. Thus,
improving on these much higher scores may be harder.

For negative connectivity, which is the most commonly
envisioned use case of the connectivity map, improvements
are more robust under almost all methods, with neighborhood
collaborative filtering again leading the pack. Improvements in
primary cell types are again especially large, but even in typical
cancer lines, an improvement of 20-35% over baseline is possible
by using cell-specific data.
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Fig. 5. Violin plot showing distribution of average ranks at which a
query signature derived from the imputed expression profile (or the true
expression profile) finds drugs different from the query drug but that match
the ATC code of the query drug at levels 1 and 4. Presented for comparison
are the average ranks if the query results were random. Plots for all ATC
levels are available as supplemental figures.

3.2 Finding drugs with similar properties

Figure 5 shows the distribution of average ranks at which a query
for the profile imputed by each method has matches at ATC code
levels 1 and 4 (the plots for all levels appear as supplemental data).
A rank of 1 means the drug is the most positively connected one
to the query, suggesting that its expression patterns are highly
reflective of the expression profile of the query drug.

For example, suppose the query signature is derived from the
expression changes observed on treating cells with cerivastatin,
which has ATC code C10AA06. The expectation is that other
drugs that are level 4 ATC code matches with cerivastatin,
such as C10AA04 (fuvastatin), would have disproportionately
low-numbered ranks, putting them near the top of the list.
However, level 3 matches, such as C10AD01 (niceritrol, a lipid
lowering agent, but not a statin) would on average have slightly
higher numbered ranks. Presented for comparison are the rank
distributions for a query of the true expression profile - which
reflects the best-case distribution - and a query where the results
of the query are randomized - which reflects the worst-case
distribution.

As we would expect, the average rank of ATC code matches
for the true profile decreases as ATC level - and, therefore,
similarity of matching drugs - increases. All imputation methods
follow this pattern. We can also use these plots as another way
of comparing the various imputation methods. Neighborhood
collaborative filtering performs the best, with the lowest median
and distribution reflecting a larger number of low-ranked (more
similar) drugs from the same ATC code.

3.3 Drugs for which imputation is most helpful

One important question is whether there are specific types or
properties of drugs for which imputation of missing data is most
or least effective.

Table 1 shows the ten drugs whose improvement in overall
expression correlation is largest, and smallest, for the neigh-
borhood collaborative filtering method. (Other methods show
somewhat overlapping lists.) A brief description of each drug’s
overall mechanism of action or indication is given, along with
ATC codes when available.

What stands out is that the compounds that seem most improved
by imputation have specific tissues in which they are likely to be
active: they act on the central nervous system (CNS), respiratory
system, muscles, or metabolism. Those that are least improved
are those that are general cellular disruptors. They inhibit protein
synthesis, essential signaling or growth mechanims, or are toxins
of unknown mechanism. While few of these particular compounds
have ATC codes, many of them have anti-cancer properties, so
they are likely to function by killing cells, regardless of cell type.
Thus, imputation using the tissue-agnostic approach is likely to
be sufficient for these compounds, whereas for highly tissue-
specific drugs, using cellular context to improve our prediction
of connectivity is more important.

The table’s one apparent exception to this rule is ergocornine,
which seems to act as a dopamine receptor agonist yet is one of
the compounds that least benefits from cell-specific information.
However, closer inspection reveals that ergocornine has many
properties of unknown mechanism, and that it acts in other tissues
beyond the brain. In fact, this compound does show improvement
with cell-specific imputation in neurons and neural progenitor
cells. However, the tissue agnostic method does so much better
at predicting this compound’s expression in most of the cancer
cells that on average, it is one of the compounds showing the least
improvement.

3.4 Comparing landmark and full gene sets

We repeated our main experiment using not just the 978 landmark
genes, but the full imputed data set with 12,328 genes. Note that
the remainder of these genes are estimated from the expression
levels of the 978 landmark genes that are directly measured. There
is evidence not only that imputation of gene expression levels
is successful for these genes, but that connectivity mapping has
greater power using these than not (Subramanian et al., 2017).

At first glance, our results seem to contradict this claim. That
is, our Spearman correlation coefficients across the entire gene
set are universally lower for the larger gene set - something that
is not too surprising given that the correlation is being measured
across a much larger number of genes. Not only are the correlations
lower, but the percent improvement in the correlation metric using
neighborhood collaborative filtering or any of the other methods
appears lower with the larger number of genes (see supplemental
figures). That is, which method comes out ahead changes with the
number of genes in some cases.

However, when we looked at connectivity performance, the
12,328-gene results were fairly similar to those with only the
landmark genes. Again, neighborhood collaborative filtering and
two-way average vie for supremacy, with collaborative filtering
winning by large margins on primary cell types (and improving
over baseline methods by larger margins than for the landmark
gene data for most primary cell / method combinations).

More exploration of results from the 12,328 gene set is in order,
but our initial assessment suggests that using it for connectivity
mapping will not be harmful and may be beneficial. Further, it
seems that connectivity is established mostly by the most extreme
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Most Improved Description ATC code
hydrastinine alkaloid, haemostatic (CNS)
beclomethasone-dipropionate steroid
flumetasone steroid D07AB03
budesonide steroid D07AC09
testosterone steroid G03BA03
isocarboxazid monoamine oxidase inhibitor (CNS) N06AF01
denbufylline phosphodiesterase inhibitor (respiratory) R03DA10
tubocurarine alkaloid, anesthetic (muscle) M03AA02
buspirone anxiolytic (CNS) N05BE01
tolazamide sulfonylurea (metabolic) A10BB05
Least Improved Description ATC code
brefeldin-a protein transport inhibitor
cycloheximide protein synthesis inhibitor
farnesylthioacetic-acid calcium influx inhibitor
palbociclib CDK inhibitor L01XE33
linifanib RTK, VEGF, PDGF inhibitor
ergocornine alkaloid, dopamine receptor agonist (CNS, muscle)
ochratoxin-a toxin
ebelactone-b urinary kinase inhibitor
kenpaullone CDK inhibitor
verrucarin-a protein synthesis inhibitor

Table 1. Drugs whose expression correlation was most or least improved by the neighborhood imputation method.

expression changes, so overall expression correlation through
the entire gene list may not be as predictive of connectivity
performance as seems likely at first.

4 Discussion

We have demonstrated that context-specific connectivity data can
be used to infer missing data in a connectivity data matrix. This
has applications for the full LINCS data set, where more than 80
cell types in the two GEO data sets we used have experimental data
characterizing at least 10 drugs), and even beyond. An important
question for future work is how well imputation works as the
training data contains smaller numbers of drugs and/or cells. In
other words, what sort of data do we need to generate in a new
cellular context in order to predict connectivity effectively? How
widely do we need to profile a new drug?

One immediately apparent observation about our results is the
distinction between the cancer cell lines that make up the majority
of the connectivity data, and the primary cells. The cancer lines
have tissue-agnostic expression correlations from .21 to .32, and
improve by 21 to 50 percent (by this metric) with the neighbor-
hood collaborative filtering method. However, the primary cell
types ASC, NEU, and NPC look fundamentally different. Tissue-
agnostic prediction is much worse for these primary cells, ranging
from .09 to .16, but the percent improvement is correspondingly
greater, ranging from 54 to 127 percent. These improvements
bring the overall expression correlation into the range typically
seen using tissue-agnostic methods for the cancer cell lines.

Interestingly, the immortalized normal kidney cell line HA1E
looks more like the cancer cell lines, suggesting that transformed
normal cells look more like each other than like primary cells. Also
unusual is that the prostate cancer cell line VCAP looks more like
a cross between a cancer cell line and a primary cell, suggesting
that it is less like the other cancer lines. It is known to come from a

prostate tumor that metastasized to bone, so perhaps it is atypical
both because of its hormonal signature and metastatic potential.

Regarding method comparisons for imputation, the neighbor-
hood collaborative filtering approach has been most successful
in this study. That said, there is the possibility of improving
SVD by using higher-order methods that better capture the
three-dimensional structure of the data. Such approaches require
considerable parameter tuning on a distinct data set. Similarly, we
have not yet worked on tuning or trying other architectures for
autoencoders, so there is more that can be done here as well.

The question about whether or not to use the full set of genes
when only 978 genes are measured directly in the L1000 assay
is an important question. Prior work suggests that connectivity
performance improves by using these genes (Subramanian et al.,
2017). However, what we found is that connectivity performance
remains more or less unchanged, while prediction of actual
expression z-scores is considerably worse. Future work should
address how best to reliably use the additional gene information.

Finally, we have demonstrated that cellular context is critical
for accurate connectivity mapping. This was apparent in prior
work using multiple different breast cancer cell lines (Niepel
et al., 2017), but becomes even more important across more varied
contexts. Both for precision cancer medicine purposes and for use
in applications beyond oncology, taking context into account is
therefore essential.
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