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ABSTRACT
Motivation: Drug repositioning allows expedited discovery of new

applications for existing compounds, but re-screening vast compound
libraries is often prohibitively expensive. “Connectivity mapping” is
a process that links drugs to diseases by identifying compounds
whose impact on expression in a collection of cells reverses the
disease’s impact on expression in disease-relevant tissues. The high
throughput LINCS project has expanded the universe of compounds
and cell types for which data are available, but even with this
effort, many potentially clinically useful combinations are missing. To
evaluate the possibility of repurposing drugs this way despite missing
data, we compared collaborative filtering with either neighborhood-
based or SVD imputation methods to two naive approaches via
cross-validation.
Results: Methods were evaluated for their ability to predict drug
connectivity despite missing data. Predictions improved when cell
type was taken into account. Neighborhood-based collaborative
filtering was the most successful method, with the best improvements
in non-immortalized primary cells. We also explored which classes
of compounds are most and least reliant on cell type for
accurate imputation, and we identified connections between related
compounds even when many were not measured in the relevant cells.
We conclude that even for cells in which drug responses have not
been fully characterized, it is possible to identify unassayed drugs that
reverse in those cells the expression signatures observed in disease.
Contact: donna.slonim@tufts.edu

1 INTRODUCTION
Connectivity mapping (Lamb et al., 2006) refers to the process
of drug repositioning by finding candidate drugs that best reverse
the expression changes caused by a given disease or condition.
The original Connectivity Map database used microarrays to profile
gene expression changes in up to four cancer cell lines treated
with 164 perturbagens, many of them FDA-approved drugs. An
expression “signature” from a given disease state, essentially sets
of up- and down-regulated genes in relevant tissues from patients
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with the disease compared to normal controls, could then be used
to find database compounds whose effect on gene expression was
negatively correlated with the expression changes caused by the
disease. Some compounds identified in this way were shown in
further studies to have high potential for therapeutic efficacy in
disease (Lamb et al., 2006; Wei et al., 2006; Zhang et al., 2012).

More recently, the LINCS Consortium dramatically scaled up
the connectivity map database using the L1000 assay, which
measures expression of 978 genes at a much lower cost. The LINCS
connectivity map includes a much larger set of compounds, small
molecules, and cellular perturbations across a wider range of cell
types (Subramanian et al., 2017). However, while there are now
many more cells profiled in the connectivity database, the data
matrix is still very sparse, with most drug profiles in a small set
of cancer cell lines. Yet recent work has shown that even different
breast cancer cell lines can have different, context-specific responses
to perturbation (Niepel et al., 2017). We observe that variation in
primary cells’ responses is even greater.

Further, gene expression profiles in primary cells are a relatively
small part of the LINCS data set, and profiling all possible cell
types and states is impractical even with more efficient assays. Thus,
candidate drugs identified through connectivity mapping may have
very different effects in vivo. For a precision medicine approach to
connectivity, particularly outside the realm of oncology, the ability
to identify drugs that reverse a patient’s disease signature even in the
absence of connectivity data for a given cell/drug combination will
improve scalability and relevance. We therefore aim to determine
whether accurate imputation of context-specific connectivity query
results is possible despite missing data.

The first step is imputing expression values for drug/cell
combinations that lack experimental data. Since the early days of
microarrays, there have been efforts to impute missing microarray
expression values caused by array defects or hybridization issues
(e.g., array scratches, localized manufacturing defects, reagent
spatters). The naı̈ve approach, averaging over expression values
for a given gene in other samples in the data set, was quickly
improved upon by more principled methods, including k-nearest
neighbors and SVD (Troyanskaya et al., 2001), local least squares
optimization (Kim et al., 2005), and Bayesian prediction (Oba
et al., 2003). Several methods made use of time series information
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when available (Troyanskaya et al., 2001; Saha et al., 2013; Bar-
Joseph et al., 2003). Collaborative filtering methods have even been
applied to this problem (Saha et al., 2016; Wang and Tseng, 2012).

However, nearly all of these approaches address a different
problem – one in which there is a limited fraction (e.g. under 20%)
of missing genes for a given sample, and in which the missing
data points are not correlated across samples. A few approaches
try to fit some characteristics of the random missing data, such as
the observed histogram of the fraction of missing genes per sample
(Oba et al., 2003). Few of the time series methods (e,g, (Bar-Joseph
et al., 2003)) deal with imputing whole expression profiles.

Furthermore, to impute entirely missing expression profiles,
one must incorporate additional domain information, such as data
from nearby time points or functional relationships between genes’
expression patterns. In another example, transfer learning has
been used to impute entire bulk RNA-sequencing profiles when
methylation profiles for the same samples are available (Zhou et al.,
2020). Here, we use expression profiles of related drugs and cells.

Explicitly imputing connectivity for unassayed drugs and cells
is thus a novel problem. Further, connectivity expression matrices
can be very sparse, with well over half of the potential cell by drug
matrix consisting of missing values. The novelty of our approach
lies in using what data we do have about how specific drugs
perform in other cells, and how various cells respond differently
to other drugs, to infer missing data and then to assess efficacy
specifically with respect to drug connectivity inference. The closest
prior work we have seen is that of (Gottlieb et al., 2017), which
uses (a limited number of) expression values inferred from eQTL
and patient cohort data to predict appropriate doses for warfarin.
Such methods have great potential, but cannot be used without data
on sequence variation.

2 METHODS

2.1 Overview of approach
To assess our ability to determine connectivity with missing data, we need
a data set where we know the right answers. We create two such data sets
by taking a complete subset of the LINCS connectivity data and a more
realistic sparse subset in which approximately 75% of the drug/cell pairs
are missing. We evaluate performance through five-fold cross-validation on
each, as described below, to assess how well connectivity queries, performed
with expression signatures characterizing each drug’s impact on cells, can
produce the same results with missing data as with the full data. Specifically,
given a drug-cell combination of interest, which we denote as drug di and
cell cj , and for which the expression profile is unavailable, we ask how well
we can impute drug connectivity for di and cj , and whether we can do so
more accurately by taking cell type into account.

2.2 Connectivity mapping data and queries
Let C be a set of c cell types, and let D be a collection of d drugs,
compounds, or cellular perturbations. Perturbations in LINCS include gene
overexpression or knockdowns, but for the purposes of this study we
consider primarily treatment of cells with named compounds or chemicals.

We start with a matrix M of gene expression profiles for a common
set of n genes in a subset of D × C. The matrix of cells and drugs is
sparse, but the expression profiles are all-or-nothing; if we have expression
data for some cell/drug combination, we have expression values for all n
genes in the treated cell compared to the untreated cell. As in the paper
introducing the L1000 connectivity data set (Subramanian et al., 2017),
these expression changes are represented by z-scores. Specifically, we use

the published “Level 5” z-score data, which include z-scores of expression
changes in drug-treated cells relative to controls, averaged over at least
three replicates. When a cell / drug combination appears multiple times in
the LINCS database, usually because that combination has been tested at
different dosage levels or had expression profiles taken at different times
after application, the expression profiles were combined into a consensus
profile, using Stouffer’s method for combining Z-scores (Stouffer, 1949).

A query signature of a particular biological or disease state is defined to
consist of two sets, one containing the k most up-regulated, and the other the
k most down-regulated, genes in that state compared to a suitable control.
So for example, a query signature for prostate cancer might consist of the
50 most up- and down-regulated genes in tumors from patients compared to
normal prostate tissue.

A connectivity map query is performed using the query signature in the
following way, as described in more detail in (Subramanian et al., 2017).
Given the query signature qu containing the k most upregulated and qd
containing the k most downregulated genes for a given cell type and drug
pair c, d and a reference expression profile r, we compute the weighted
connectivity score (WTCS) as:

WTCS =

{ ES(qu,r)−ES(qd,r)
2

if sign(ES(qu, r)) 6= sign(ES(qd, r))
0 otherwise

where ES(q, r) is the weighted Kolmogorov-Smirnov enrichment statistic
(ES) described in (Subramanian et al., 2005), and captures the enrichment
of the set of genes q in profile r. WTCS ranges from -1 to 1. A score of 1
represents high positive connectivity, meaning that the drug’s effect on the
given cell appears to be similar to that in the query signature, while a score
of -1 represents high negative connectivity, or a drug/cell combination that
up-regulates the down-regulated genes from the query signature and down-
regulates its up-regulated genes.

Our data are derived from the LINCS data published in the Gene
Expression Omnibus (GEO) (Edgar et al., 2002) as GSE70138 and
GSE92742. Together these contain 591,699 expression profiles for 98 cell
types and 29,668 perturbagens spread over 189,173 unique cell/perturbagen
combinations. The data were downloaded on Feb. 28, 2018.

For assessment purposes, we created two data matrices: a small, complete
data set, and a larger, sparse data set. The complete data matrix contains 12
cell types: 8 cancer cell lines, A375, A549, HCC515, HEPG2, HT29, MCF7,
PC3, and VCAP; HA1E, an immortalized normal kidney cell line; one stem
cell line, ASC (normal adipose-derived stem cells), and two primary cell
types: NPC (neural progenitor cells partially differentiated from iPSCs) and
NEU (fully differentiated neurons). To create a complete and interpretable
data matrix, we chose 450 drugs with “real” names (i.e., they are not just
numbered compounds in development) and for which there is expression
data for all 12 of the cell types above.

The sparse data matrix includes 80 cell types: 60 cancer cell lines, 6
immortalized normal cell lines, 4 stem cell lines, and 10 primary cell types.
We selected a set of 1330 named drugs, again for interpretability, and
expression data if available for each of the 80 cells listed. About 75% of
the drug/cell combinations in this data set are missing, meaning that the
compound was not assayed in that cell.

2.3 Data imputation methods
2.3.1 Baseline methods In the original connectivity map paper (Lamb
et al., 2006), connectivity scores were computed without consideration of
cell type, essentially averaging across all cells. Given that the vast majority
of these profiles were in a single cell line (MCF7), ignoring cellular context
made sense. Even the current connectivity tool, using the much larger
and more varied LINCS data set, reports averaged “summary” profiles
(Subramanian et al., 2017). This informs the idea behind our baseline
imputation methods.
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Tissue-agnostic: A good baseline prediction of drug di’s performance in cell
cj might be simply to look at what drug di does to a cell, regardless of what
type of cell it is. Assume that we have expression profiles for drug di on
other cell types. By taking the median gene expression profile over of that
drug all the other cells for which we do have data (the highlighted row in
Figure 1a), we arrive at a prediction of what drug di “usually does” to a
cell. We call this the tissue agnostic imputation method, and compare other
results to this.

Two-way average: We might additionally want to include tissue-specific
information in a very straightforward way. We can accomplish this by
averaging the tissue-agnostic prediction for drug di across all other cells with
the analogous “drug-agnostic” prediction for cj (the highlighted column in
Figure 1a) that tells us how expression of cj after perturbation typically
differs from expression in other cells. We refer to this as two-way average
prediction.

2.3.2 Collaborative filtering Collaborative filtering is an approach
used in recommender systems to impute missing rating values and thereby
recommend new products to users based both on information from similar
users and from other items that user has rated. Calculations are typically
based on sparse databases with m users and n items containing those
users’ ratings for ≤ n of those items (Su and Khoshgoftaar, 2009). These
ratings can represent any kind of relationship between users and items. In
applications such as movie or purchase recommendations, the ratings might
be represented by integers in the range [1,5]. But in other applications,
ratings might be real numbers or categorical variables. This approach is of
particular interest for imputation of connectivity data because of the sparsity
of the database.

Neighborhood approach: One approach to collaborative filtering is to rely
on the closest neighbors of a particular sample as a model. An average,
weighted by similarity of the neighbors’ ratings, approximates the rating
for the sample of interest. A critical change was necessary to use this
approach with our data, because each ”rating” in the connectivity matrix
is actually a vector of gene expression values. To avoid loss of information,
we view the gene expression values as a multi-part rating of the same item.
In the user/movie-rating metaphor, these values would represent a rating that
perhaps specified an overall rating, as well as ratings of the movie’s acting,
cinematography, and soundtrack. If two users rate a movie similarly but one
rates the cinematography poorly and other rates it highly, these users might
actually be more different than they first appear.

From the data matrix M defined in section 2.2, we compute a “ratings”
matrixR by mean-centering the row of a drug’s “rating vectors” (expression
values) for all cells. Specifically, let µ be the mean of all non-missing values
in the row, and then replace each existing value v by (v−µ) and each missing
value by (0− µ).

We then calculate similarities by taking the cosine similarity between all
pairs of rows in R, yielding a symmetric matrix.

For each missing expression profile (vector), we then predict that profile
by finding the top x “neighbors” of the row containing the missing value.
We used k = 50 neighbors for the complete 12x450 data set and k = 120
neighbors for the sparse 80x1330 data set; both are around ten percent of the
number of rows in the matrix. (We tuned the fraction of neighbors parameter
on a smaller and older data set consisting of 200 non-overlapping drugs and
6 cells; we did not find the results to be highly sensitive to changes in k.
Additionally, we replicated our results for the 80x1330 data set, below, with
k increased or decreased by a factor of two, and again confirmed that we see
minimal effects on the connectivity results.)

We compute the predicted profile Pij for drug di and cell cj , as

Pij = rij +

∑x
l=1 cos(ri, rl) ∗ rlj∑x

l=1 cos(ri, rl)

where cos refers to the cosine distance between two ratings vectors, rij
refers to the ratings vector in row i and column j, ri is the average value of

all values present in row i, and rlj is the value corresponding to the current
drug-cell-gene combination in the neighbor row l.

Matrix decomposition: The goal of this approach is to account for latent
subclasses within the drugs or cells. We used the FunkSVD package,
which applies stochastic gradient descent SVD optimization to build an
approximation of an original input matrix M . This specific methodology
was shown to be particularly effective in predicting Netflix movie ratings
(Bennett and Lanning, 2007). The FunkSVD method does not require a
complete matrix to run, and effectively “overlooks” missing or unknown
ratings (Funk, 2006). Note that this is not the case for a simple SVD
decomposition, which would require some initial “guess” for the missing
entries (Sarwar et al., 2000). Therefore, we worked directly with the raw
values in M . We still consider M to be a multi-part ratings matrix, although
it is not mean-centered like R.

FunkSVD decomposes the matrix into component matrices U and V with
singular values folded into those matrices. The parameters of this function
determine the output rank of the approximation. For our purposes we used
rank parameter k = 55. (As with the nearest neighbors approach, we tuned
the rank parameter k on the smaller, older data and we evaluated the 80x1330
data set with 2x and 1/2x k; again, changes in k did not greatly impact the
results.) A lower-rank approximation can then be obtained by reconstructing
the matrix withM = UV ′. We then predicted the values of missing data per
row with the approximation rnew = uV ′ where u is a row in M containing
an unknown multi-part rating.

2.4 Evaluation
2.4.1 Cross-validation To assess our performance, we need data on
which we know the right answers. For each of the complete connectivity
matrix and the sparse matrix described in section 2.2, we created cross-
validation data sets in the following way.

Each cell / drug combination is randomly and independently assigned to
one of five folds. We then verify that the candidate set of fold assignments
has no fold where more than 75 percent of the cells for a given drug, or
75 percent of the drugs for a given cell, are assigned to that fold, ensuring
that any method would be able to produce an imputed expression profile for
any missing cell/drug combination. If this requirement was violated, fold
assignments were completely regenerated until the requirement was met.

For each fold, a given method is provided only the z-score normalized
gene expression profiles for cell / drug combinations not in the fold, and
must impute the expression profiles for cell / drug combinations that are
in the fold. For the sparse data set, folds consist of true profiles only for
evaluation; missing data is assigned a fold value of zero and predictions for
such values do not factor into our accuracy assessments. Over all five folds,
a given method will produce a single imputed profile for each cell / drug
combination. We then compare the imputed profile to the true profile for that
cell / drug combination, using the various scoring metrics described below.

To assess variance due to the randomness in this cross-validation
procedure, we created five independent instances (“runs”) of cross validation
data sets for both the complete and sparse matrices. We summarize our
results across those five runs.

2.4.2 Scoring connectivity prediction Once we have a predicted
expression profile for a drug-cell combination, we must assess how accurate
our prediction is through some comparison to the known true expression
profile. Since our aim is to infer connectivity for cell-drug pairs for which
we lack data, an informative evaluation method would be to compare the
connectivity results from the withheld true data with those obtained using
the imputed data.

There are two parts of a list of drugs returned by a connectivity query
that are of interest. Drugs with the most positive connectivity scores are
drugs that replicate the query signature; these are sometimes used to identify
similar drugs, or to find compounds that might cause a similar change
to that of the query expression profile as an adverse event. Drugs with
the most negative connectivity scores are those that reverse the observed
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a b

Fig. 1. Methods overview. a) In tissue-agnostic imputation, the median of the expression profiles (vectors) for drug di on cells other than cj (in blue) is used
to predict the unknown expression profile for drug di on cell cj . The two-way average is the average of two sets of expression profiles: the median of the
expression profiles for drug di on cells other than cj (in blue) and the median of the expression profiles for drugs other than di on cell cj (in green). b) In the
neighborhood approach to collaborative filtering imputation, neighbors are drugs whose expression profiles on cells other than cj (in orange) are most similar
to di’s profile on cells other than cj (in blue). In this example with k = 2 neighbors, the expression profile for cell cj on neighbor drugs dn1 and dn2, shown
in green, are used to impute the profile for drug di on cell cj .

query signature; these are candidate therapeutics for an observed disease
signature. Accordingly, we want to assess how well the most-positive, or
most-negative, connectivity results from the imputed data match those from
the withheld true data.

To do this, we use the Weighted Spearman Rank Correlation measure,
defined by (Shieh et al., 2000). We use a weight function defined as

w(r) = 2φ(r|µ = 0, σ = Nε),

where r is the result rank, φ is the normal distribution of the form
φ(x|µ, σ), and ε is a parameter with value between 0 and 1 controlling the
“aggressiveness” of the curve.

In this work, we chose ε = 0.01, which applies weights of significant
magnitude to approximately the top 20 results, after which weights diminish
towards zero. We tested the effect of doubling or halving ε but saw minimal
changes in the results.

2.5 Detecting drugs with similar functions
2.5.1 Do predictions connect to true signatures of similar drugs
Beyond comparison to true profiles, we can evaluate our performance more
directly by assessing the connectivity of a drug’s expression profile to other
drugs within the same perturbagen class. A perturbagen class (PCL) is a
group of drugs that share a mechanism of action or target genes. PCLs are
defined by published literature and further refined by connectivity analysis to
yield 171 classes, as described in more detail in (Subramanian et al., 2017).
Actual PCL membership used in this manuscript was obtained through
personal communication with the authors.

For a given compound, a query signature reflecting expression changes
caused by treatment of cells with that compound is expected to return strong
positive connectivity between that drug and others in the same PCLs. To
evaluate a method, we can construct a query from an imputed signature and
determine if drugs in the same PCL set are over-represented towards the top
of the returned list, expressing strong positive connectivity.

To do this, we used the imputed expression profile for each drug, d, to
create a query signature with the top and bottom 50 genes (the number
recommended by (Subramanian et al., 2017)). We then use that signature
to query the remaining drugs in the true data set, returning a list of weighted
enrichment scores for each drug, ordered from most to least positively
connected to drug d.

We adapt gene set enrichment analysis tools (Subramanian et al., 2005;
Planet, 2019) to function as a drug set enrichment analysis, evaluating the
distribution of drugs within a PCL set in a connectivity result. Ideally the

drugs other than the one that produced the query signature should be among
the most connected compounds.

For this analysis, we require a minimum of three drugs per PCL. After
removing drug classes with no more than 2 drugs in the chosen query matrix,
there are 132 drugs of the 450 in the complete data set that are in the
remaining perturbagen classes. In the sparse data set, 334 of the 1330 drugs
are in PCLs.

An enrichment score (ES) is calculated as described in 2.2, weighted
by connectivity scores from the query results. In this context, an ES
captures enrichment of a PCL set in the connectivity result of a drug
that is a member of that set. The normalized enrichment score (NES) is
calculated to account for the varying set sizes. Significance of enrichment
is determined by comparing the observed NES to the NES of 1,000 random
permutations of the connectivity result. The fraction of the absolute value of
the permuted NES greater than, and thus stronger, than the absolute value
of the observed NES yields the normalized p-value (Mootha, 2003). (For
negative connectivity scores this becomes the fraction of random NES less
than the observed NES.)

For each drug/cell combination the imputed signature is queried against
the true matrix. The distribution of the normalized enrichment scores
calculated for each drug, pcl, and cell combination is compared across
methods, with the expectation that the NES should be strongly positive if
strong connectivity is correctly detected.

2.5.2 Finding similar unassayed drugs With known drug classes,
we can also assess how well we impute connectivity query results to
drug/cell combinations that were not experimentally evaluated. This allows
us to compare efficacy of connectivity imputation across cells and drug
classes. Missing data is predicted from the true expression profiles using
neighborhood collaborative filtering, chosen because it was the best
approach overall. Experimentally evaluated signatures are replaced with the
average of their imputed profiles from each of the five runs to generate a
completely imputed matrix from the sparse data set. We also created another
completely imputed matrix using the tissue agnostic method for comparison.
Each signature is queried against the complete matrix, with strong positive
connectivity between drugs in the same PCL correctly identified if the NES
score is positive and significant (meaning the normalized p value is less
than 0.05). We measure the percentage of drugs significantly enriched in
their PCL for every PCL/cell combination to assess our ability to impute
connectivity query results even in the absence of experimental data, as well
as to estimate the amount of data needed.
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a b

Fig. 2. a) Negative weighted connectivity correlation across all genes and drugs, for each of the 12 cell lines in the complete matrix. Methods are denoted by
single-letter labels: N : neighborhood collaborative approach; S : SVD; T : two-way average; G : tissue-aGnostic (baseline method). Error bars show variation
across cross validation runs. b) Percent change in negative weighted connectivity correlation compared to the tissue-agnostic method.

a b

Fig. 3. a) Positive weighted connectivity correlation across all genes and drugs, for each of the 12 cell types in the complete matrix. Error bars show variation
across cross validation runs. Labels are the same as in Figure 2. b) Percent change in positive weighted connectivity correlation compared to the tissue-agnostic
method.

3 RESULTS
3.1 Using cell-specific data improves imputation
To assess accuracy, we performed connectivity queries with query
signatures containing the most dysregulated genes for each drug in
the treated cell line compared to control. Specifically, the query
signatures consist of the 50 most up- and down-regulated genes for
a given drug. Positive connectivity scores identify the drugs that
induce expression changes most similar to those of the query drug;
negative connectivity scores identify drugs whose effects on a cell
reverse the effect of the query drug.

For the complete data set, Figures 2 and 3 show the average
weighted Spearman correlations (over all drugs) between the true
and predicted connectivity results (a) and the percent changes for
each compared to the tissue agnostic method (b). Corresponding
figures for the sparse matrix can be found in the supplemental data.
These are organized both by cell type and by the percentage of drugs
in a given cell that have been profiled experimentally.

For the complete matrix, negative connectivity, which is the most
commonly envisioned use case of the connectivity map, shows
robust improvement in prediction under almost all methods, with
neighborhood collaborative filtering either best or essentially tied
for best with the two-way average in all cells. The neighborhood
method’s improvements are especially large for the primary cell
types, where it notably out-performs the two-way average. But
even in the cancer cell lines, an improvement of 20-40% over the
tissue-agnostic baseline is seen with the neighborhood method.

Positive imputation results show little improvement over baseline
for all but the primary and stem cell types in the complete matrix.
Indeed, SVD methods are actually worse than tissue-agnostic
imputation here. But the neighborhood collaborative filtering and
two-way average approaches, both of which use cell specific
information, are at least as good as the tissue-agnostic approach
for the immortalized cells. For the primary and stem cells, the
neighborhood approach still shows a substantial improvement, with
two-way average and SVD vying for second place. Note that the
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tissue-agnostic weighted correlation for NEU cells is the lowest
(0.24) in this data set, with the other primary cell, NPC, in the
low 0.30s, and most immortalized cell lines showing a weighted
correlation between 0.5 and 0.67. Thus, improving on these much
higher scores may be harder.

Overall these results demonstrate that cell type is an important
aspect of connectivity mapping. We conclude that incorporating
cell-specific information improves connectivity outcomes in all
cells, but it does so most dramatically in cells that are neither
malignant nor immortalized.

In the sparse matrix, there is improvement over baseline for both
positive and negative connectivity correlations across all classes of
cells. The nearest neighbors approach continues to outperform all
methods for cells with enough data, with SVD and two-way average
improving over tissue agnostic as well.

However, this trend begins to break down for cells where the
percentage of drugs assayed is low. For primary cell types, tissue-
specific methods are more powerful in all cells with at least 41%
of the 1330 drugs assayed. In cells containing data for 5% or less
of the compounds, i.e. where there is not much cell-specific data to
work with, the tissue agnostic method is sometimes a more reliable
approach, and error bars reflecting the varying cross validation folds
become notably larger.

This holds true for cancer cell lines as well, where tissue-specific
methods and particularly the neighborhood approach exceed tissue
agnostic imputation for cells with at least 48% of the compounds
assayed, but it becomes much less robust for cells in which fewer
than 13% of the compounds have data, and here again there are
large error bars. Immortalized and stem cells, though there are far
fewer of them with reasonable amounts of data, appear to follow a
similar pattern.

3.2 Downsampling reveals amount of data needed
To determine how performance varies as a function of the number
of compounds assayed, filling the gap between 41% and 13%
identified in the previous section, we selected a few cells from each
category of cells with more than 75% of the compounds assayed
and downsampled the number of drugs. Compounds were randomly
removed from folds until just 50%, 40%, 30%, 20% or 10% of the
drugs remained for a given cell line. Signatures were imputed once
more and negative connectivity results were compared to the true
results. This was repeated across all five instances of cross validation
data sets.

Figure 4 shows the negative weighted connectivity correlation for
each cell type averaged across all genes, drugs, and runs, plotted
against percent of compounds used for imputation. We found that
in all cells analyzed, performance didn’t suffer notably so long as
at least 20% of the drugs had data (e.g. we assayed approximately
260 of the 1330 compounds). Additionally, so long as data were
available for at least 10% of the drugs, all methods performed better
than tissue agnostic regardless of cell type, with nearest neighbors
having the best performance or, in a few cases, being a close second.

These early findings suggest that for the larger, sparser data
set, incorporating cellular context improves positive and negative
connection detection over all cells types that have data for at least
130 drugs. Further work will be needed to determine more precisely
how the distribution of compounds sampled affects predictive
performance.

3.3 Imputed profiles detect related compounds
Figure 5 shows the distribution of NES scores between a drug
and its corresponding Perturbagen Class (PCL) in a given cell for
the complete matrix (a) and sparse matrix (b), using the method
described in section 2.5.1. In this context, a positive NES score
means the connectivity results for drug d has drugs within the same
PCL set clustered towards the top of the returned list, thus strong
connectivity is accurately detected. For randomized lists NES scores
are expected to be 0; if the imputed profiles successfully replicate
the signature of drugs in the same PCLs, then we would expect the
greatest density of NES scores to be well above zero.

For all methods in both the complete and sparse matrix, the
median of the NES scores is greater than 1.0, with the majority of
NES scores clustered well above zero. Neighborhood collaborative
filtering has a slightly higher median than all other methods and
greater NES values overall in the sparse matrix, proving to be the
most robust and consistent method to be evaluated.

3.4 Predicting connectivity of unassayed drugs
Given the performance of the neighborhood collaborative filtering
method in Section 3.1, we generated a complete version of the
sparse matrix (where 75% of the cells were missing) using only
imputed data, as described in Section 2.5.2. We then assessed our
ability to find related drugs within the same PCL using imputed
query profiles against this completely imputed matrix.

Figure 6a shows the percentage of drugs enriched for their PCL
set using this complete matrix. Just primary cells are shown, with
full plots containing all 80 cell types in the supplemental data,
organized by cell type (cancer, immortalized, stem and primary) and
ordered by percentage of drugs profiled in each cell and PCL size.

Of the drug/cell/PCL combinations, 53% have normalized p-
values less than 0.05, meaning that in the majority of drug and
cell combinations evaluated, connectivity query results are correctly
imputed by the neighborhood collaborative filtering method, given
a sparse matrix of experimental data. The approach was best at
accurately detecting strong positive connectivity in most of the drug
sets in NPC, SKB, PHH and NEU cells, which had data for over
41% of the compounds. In cells containing data for 5% or less of
the compounds, the percentage of significant NES scores becomes
less reliable, consistent with the results noted above for positive and
negative weighted connectivity correlations. This is true across all
cell types assessed, with cells containing less than 5% of the 1330
drugs assayed showing a lower percentage of statistically significant
NES scores.

Figure 6b shows the same plot for data imputed by the tissue-
agnostic method, allowing us to identify classes of drugs in
which imputation is better using cell-type-specific or tissue-agnostic
methods. We notice that for tissue-agnostic imputation, the amount
of data for the individual cell predictably doesn’t have much affect
on accuracy; the bottom cells (with much less data) look more or
less the same as those on top.

Similarly, drug classes with the most drugs tend be well imputed
across the board, suggesting the likelihood that in such cases
the “neighborhood” is well populated by related drugs. Drug
classes for which imputation is better with collaborative filtering
include aurora kinase inhibitors, FLT3 inhibitors, and a number of
steroid/hormone classes (progesterone receptor agonists, androgen
receptor modulators). Classes where tissue-agnostic methods were
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Fig. 4. Negative weighted connectivity correlation for the named cells across all genes and drugs (y-axis), as a function of the percentage of the 1330
compounds whose data was available for imputation. Maximum x-values on each plot reflect the actual amount of data for that cell; all other points reflect
downsampling. Error bars show the variation across cross-validation runs; most are smaller than the data markers.

a b

Fig. 5. a) Violin plot showing distribution of normalized enrichment scores of drugs from a given drug set imputed from the complete matrix. b) Violin plot
showing distribution of normalized enrichment scores of drugs from a given drug set imputed from the sparse matrix.

better included retinoid receptor agonists and serotonin receptor
antagonists. (These trends are visible in the primary cells in Figure 6
but may be clearer in the supplemental figure showing all cells.)

We conclude that positive connections between drugs of the same
class can be indeed be imputed for missing data. To do this well,
more than 5% of the compounds from the 1330 assessed need to be
experimentally evaluated for robust imputation, but again further
work will be needed to determine more precisely the impact the
number and distribution of compounds assayed has on accurate
connectivity prediction.

3.5 Examples of predicted connectivity in disease
To illustrate use cases of our collaborative-filtering predictions,
we identified differentially expressed genes in a previously-
published microarray study that compared the bulk transcriptomes
of postmortem hippocampus samples between subjects with
schizophrenia and age- and sex-matched controls ((Lanz et al.,
2019); GSE53987). We applied the fifty most up- and down-
regulated genes as the “query signature” against a hybrid version
of the sparse matrix, in which missing data was replaced by our
cell-specific predictions. Our goal was to query both assayed and
imputed data to identify compounds that might reverse this neuronal
transcriptional signature despite not having been assayed in neurons
(denoted NEU) in the LINCS data set.
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a)

b)

Fig. 6. a) Percent of drugs correctly expressing strong connectivity to their drug class using the fully imputed sparse matrix by the neighborhood approach,
shown only for primary cells. The number of drugs in each PCL set is included in the PCL name, and the percentage of drugs assayed in each cell type is
included in the cell name. The darker the shade of blue, the higher percentage of drugs with statistically significant NES scores. Grey dots represent PCL/cell
combinations in which there were no statistically significant NES scores. b) Percent of drugs correctly expressing strong connectivity to their drug class using
the fully imputed sparse matrix by the tissue agnostic approach, shown only for primary cells. The darker the shade of blue, the higher percentage of drugs
with statistically significant NES scores. Grey dots represent PCL/cell combinations in which there were no statistically significant NES scores. Plots were
generated using the corrplot package (Wei and Simko, 2017).

Most of the top compounds reversing the schizophrenia signature
had indeed already been directly profiled in neurons, so validating
their links to schizophrenia simply supports the idea of connectivity
mapping in non-cancer cells. Still, as an illustration, the top two
such compounds were pirfenidone, an anti-fibrotic that has shown
neurological effects in multiple sclerosis and chronic pain (Walker
and Margolin, 2001; Peng et al., 2020), and remoxipride, an atypical
antipsychotic indicated for schizophrenia, but whose use since 2003
has been limited due to toxicity concerns (Nadal, 2001).

The most connected compounds missing from the sparse matrix,
and that thus would not have been discovered without our predictive
approach, include theophylline and bosentan. Theophylline
is a naturally-occurring phosphodiesterase- and HDAC-inhibitor
typically used in asthma but known to have neurological effects.
It has been suggested for potential therapeutic use in both
schizophrenia (Zagorska et al., 2018) and Alzheimer’s disease
(Fernando et al., 2017). Bosentan is an endothelin receptor
antantagonist whose targets, EDNRA and EDNRB, regulate
migration of neural progenitor cells (Nishikawa et al., 2011); mouse
mutations of these genes lead to abnormal neurological morphology
and function (www.informatics.jax.org). These surprising yet
plausible connections, along with more expected ones (e.g.,
citalopram, a selective serotonin reuptake inhibitor inexplicably
not profiled in neurons), were discoverable only through predictive
methods.

We next queried the same database with the signature of
differentially expressed genes from a microarray study that

compared left ventricular myocardial samples from ischemic
cardiomyopathy patients to controls ((Kong et al., 2010)
GSE16499). There are no myocardial (heart muscle) cells in the
LINCS data sets we downloaded, but there are primary skeletal
muscle cells (SKL), although with data for only 4% of compounds
their predictive power may be limited. Nonetheless, the most
connected predicted compounds for the cardiomyopathy signature
are givinostat, shown to have therapeutic efficacy in a mouse
model of heart failure (Jeong et al., 2018), and the ATP-ase
inhibitor brefeldin-a, which affects cholesterol transport (Verghese
et al., 2008), a process important in cardiovascular disease. The
one compound more significantly connected in muscle cells and
actually assayed in the SKL cells was vorinostat (also known as
suberoylanilide hydroxamic acid or SAHA), which has also shown
benefit in a number of models of cardiac dysfunction (Chelladurai
et al., 2021).

4 DISCUSSION
We have demonstrated that context-specific connectivity data can
be used to infer missing data in a connectivity data matrix. This
has applications for the full LINCS data set, in which many cell
types have data for just a few tens of compounds, and even beyond.
We have also determined that for our sparse matrix covering 1330
drugs assessed, cell-specific information does not always improve
imputation of connectivity when fewer than 5% of the drugs have
been profiled in the cell. Downsampling the number of compounds
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for cell lines with the most available data suggested that at least
20% of the data is necessary for reliable cell-specific imputation. An
important direction for future work is to better understand the impact
of the distribution of compounds needed for robust prediction across
sparse matrices of different sizes and compositions.

Regarding method comparisons for imputation, the neighbor-
hood collaborative filtering approach has been most successful
in this study. That said, there is the possibility of improving
SVD by using higher-order methods that better capture the
three-dimensional structure of the data. Such approaches require
considerable parameter tuning on a distinct data set. Beyond that,
there is room for additional improvement using different machine
learning methods.

We have further demonstrated that both negative and positive
connectivity can be inferred from a complete imputed matrix
generated from the sparse data set. Drugs that are members of
PCLs with at least 12 compounds of the 1330 drugs analyzed are
enriched for other members of their PCL set across all cell types
with enough data. Of all the drug/cell/PCL combinations tested,
53% have a statistically significant NES score. This suggests the
imputed expression profiles replicate the imputed query signatures
of drugs in the same class, and the complete imputed matrix can
be used for finding drugs with the same mechanism of action or,
alternatively, drugs that reverse disease states.

Indeed, queries based on actual expression data from patients
were able to identify compounds that were not tested in those
cells and would not have been discovered without these predictive
approaches. Of the four compounds highlighted as new discoveries
in our example disease queries, only givinostat would have been
among the top 10% of compounds if querying the “summary”
profile, an average of just the assayed cells. The others are only
discoverable through cell-specific imputation.

Finally, we have demonstrated that considering cell type is critical
for accurate connectivity mapping. This was apparent in prior work
using multiple different breast cancer cell lines (Niepel et al., 2017),
but becomes even more important across more varied contexts. Both
for precision cancer medicine purposes and for use in applications
beyond oncology, taking context into account is therefore essential.
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